首页> 外文OA文献 >Numerical method based on Galerkin approximation for the fractional advection-dispersion equation
【2h】

Numerical method based on Galerkin approximation for the fractional advection-dispersion equation

机译:基于Galerkin近似的分数阶数值方法   对流 - 弥散方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We use a concept of weak asymptotic solution for homogeneous as well asnon-homogeneous fractional advection dispersion type equations. Using Legendrescaling functions as basis, a numerical method based on Galerkin approximationis proposed. This leads to a system of fractional ordinary differentialequations whose solutions in turn give approximate solution for theadvection-dispersion equations of fractional order. Under certain assumptionson the approximate solutions, it is shown that this sequence of approximatesolutions forms a weak asymptotic solution. Numerical examples are given toshow the effectiveness of the proposed method.
机译:对于均质和非均质分数阶对流弥散类型方程,我们使用弱渐近解的概念。以Legendrescaling函数为基础,提出了一种基于Galerkin逼近的数值方法。这导致了分数阶常微分方程组,其解又给出了分数阶对流扩散方程的近似解。在近似解的一定假设下,证明了该近似解序列形成了一个弱渐近解。数值算例表明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号